
R Bootcamp Part 1
Dani Navarro
Amy Perfors

The plan for today

• Me: intro material
• Dani: bringing it all together

This is meant to be very interactive!!

• Very introductory (we
presume nothing) but know
you’re smart :)

Lots of exercises throughout

All
good!

Need
help!

www.menti.comTo make an anonymous comment, go to:
Code 78 13 31

First, a quick question to gauge where
everyone is coming from:

Which of these statements best describes your background?

www.menti.com Code 90 48 78

Structure to my lectures

• About R and Rstudio
• Basic commands
• Using functions
• Introducing variables
• Introducing vectors
• Installing and loading packages
• Managing the workspace

• Loading a workspace file
• Data frames
• Factors
• Saving data to a workspace file
• Importing data from a text file
• Storing commands as a script
• Getting around the computer

About R and RStudio

What is R?

• R is a statistical programming language
• You can use it to

• Do basic calculations

• Do statistical analyses

• Draw graphs

• Write programs

• Etc.

Why do we teach R?
• Pluses:

• It’s open source and costs nothing

• It’s very powerful (way more powerful than this class suggests)

• It’s rapidly becoming the most popular data analysis tool

• It’s also (secretly) an introduction to programming (a valuable skill!)

• Minuses:
• It’s got a steeper learning curve than some alternatives

• Which is why we’ll spend a few lectures introducing it

• (As always: don’t panic. Previous classes did just fine on this!)

http://r4stats.com/articles/popularity/

R is where the jobs are…

Job trends from indeed.com. SPSS is another major statistical
software (which used to be used here), not open-source.

R

SPSS

http://r4stats.com/articles/popularity/
http://indeed.com

http://r4stats.com/articles/popularity/

R is (increasingly) what academics use

R increased from
2013 to 2014

SPSS decreased (a lot)
from 2013 to 2014

http://r4stats.com/articles/popularity/

http://r4stats.com/articles/popularity/

and what most current data scientists use

Responses
to a survey

of data
scientists

http://r4stats.com/articles/popularity/

Getting R and Rstudio
• You should have them on your computer already

• If you don’t, the websites you need are:

• http://www.r-project.org/ (install R first)

• http://www.rstudio.com (install Rstudio next)

• There are documents on our resource page describing the process
in detail

• Dani’s PSYR page also describes the process:

• http://compcogscisydney.org/psyr/#core-toolkit

This is the icon for Rstudio.
Open this to get started

http://www.r-project.org/
http://www.rstudio.com

Rstudio has
various “panels”

Note: I use a Mac and all my screenshots will be from that.
There may be subtle differences if you have Windows, but nothing substantial will differ.

They can be
minimised and

maximised

Click on these to
bring up different

“panels” (we’ll talk
about them later)

The console is the
most important
part. That’s R

running inside it!

Basic commands

You type commands here, at the
“command prompt”

Our first command...

The number 13 is the output
(don’t worry about the [1] for now)

> 10 + 3
[1] 13

This is a commandThe > is the command prompt

> (6 - 4) / 2
[1] 1

> 6 - (4/2)
[1] 4

When performing multiple calculations, use
parentheses to make sure R does the

calculations in the desired order

(Note: without parentheses, the order is: ^ first,
then * and / second (left to right), and then + and -
last (left to right). No-one remembers this at first.)

+ addition
- subtraction
* multiplication
/ division
^ taking powers

Simple calculations

These are referred to as “operators”
(each operator is used to carry out

a particular kind of operation)

Logical statements

> 10 < 100
[1] TRUE

> 2 + 2 == 5
[1] FALSE

& AND
| OR
! NOT

> (10 < 100) | (2 + 2 == 5)
[1] TRUE

> (10 < 100) & (2 + 2 == 5)
[1] FALSE

== equality
!= inequality
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Exercises

1. One mile is 1.61 kilometers. Use R to figure out how
many kilometers 5 miles are.

2. Use R to calculae (8+4)*12. How is that different from
8+4*12?

3. TRUE or FALSE? eight is less than six

4. TRUE OR FALSE? 52 is equal to 81?

5. TRUE OR FALSE? (4 is greater than or equal to 22) AND
(1 is less than -1 times -1)

Using functions

Functions

- The function is called sqrt()
- The 25 is the “argument” to the function.

Example: square root

There are not enough symbols on the keyboard to do
everything you might want to do... so there are only a few

operators

Most things are functions

Arguments
Every function has arguments. You can think of functions like
empty trains at the depot. Each function has a certain number

of carriages, and each carriage requires certain things.

coal

This train cannot leave the depot if it doesn’t have its
carriage filled with the right thing (coal).

Arguments
Every function has arguments. You can think of functions like
empty trains at the depot. Each function has a certain number

of carriages, and each carriage requires certain things.

coal

This function cannot work if it doesn’t have its argument
filled with the right thing (a number).

sqrt (25)

Arguments
Every function has arguments. You can think of functions like
empty trains at the depot. Each function has a certain number

of carriages, and each carriage requires certain things.

When a train arrives successfully, you can
“convert” it to money (which buys more coal).

coal
coal

coalcoal

coal

Arguments
Every function has arguments. You can think of functions like
empty trains at the depot. Each function has a certain number

of carriages, and each carriage requires certain things.

When it runs successfully, it “converts” into an answer

sqrt (25) 5

Some functions that you might see on
a scientific calculator

sqrt() - Square root
round() - Round a number
log() - Logarithm
exp() - Exponentiation
abs() - Absolute value

Functions with multiple arguments

- Many functions can “take” more than one argument;
- Separate the arguments with commas.

Argument #1: The number
that needs to be rounded

Argument #2: How many
digits to round it to?

Arguments
This is like a train with multiple carriages. Each carriage can

only take the thing it is designed to take (order matters).

coal wood

round (3.1415, 2)

wood coal

round (2, 3.1415)

X X
X X

Arguments
This is like a train with multiple carriages. Each carriage can

only take the thing it is designed to take.

coal wood

round (3.1415, 2)

Note that some arguments are
required, and some are not!

Some arguments have defaults

- A lot of arguments have “default values”.
- If you don’t tell R what value to use, it uses the default

> round(x = 3.1415)
[1] 3

The default number of
digits to round to is zero,

so that’s what R uses here

Arguments have names

- Most of the time, the arguments have “names”,
- You can use the names when typing commands

> round(x = 3.1415, digits = 2)
[1] 3.14

The number that needs
to be rounded is called x

The number of digits to
round to is called digits

Arguments have names

If you specify the names, the order doesn’t
matter. But if you don’t, it does!

This is known as a
“silent fail.” What we

input didn’t make sense,
so it just went with the

default, with no warning.
Be careful of these!

“Nesting” functions

Functions can take other functions as arguments!

coal wood

coal

This is where the analogy sort of breaks down, but remember
that you can effectively convert “trains” to “coal…”

“Nesting” functions

Functions can take other functions as arguments!

coal wood

This is where the analogy sort of breaks down, but remember
that you can effectively convert “trains” to “coal…”

coal coal coal

coal coal coal

coal coal

“Nesting” functions

Functions can take other functions as arguments!

coal

This is where the analogy sort of breaks down, but remember
that you can effectively convert “trains” to “coal…”

coalcoalcoal coal

coal coalcoalcoal

coal coalcoal

“Nesting” functions

Functions can take other functions as arguments!

In the same way, the inside functions “convert” to their
answers. So to evaluate it, you work from the inside out.

sqrt (round(4.45))

sqrt (4)

2

“Nesting” functions

Functions can take other functions as arguments!

sqrt (round(4.45))

Note that the parentheses are balanced. If they
aren’t, this can cause a problem because R

won’t know what goes inside what.

Exercises

1. Calculate the square root of 81.

2. What happens if you try to take the square root of -81?
Use the abs() function to make it non-negative first.

3. What is the exponent of the log of 2?

4. Round 4328.29874 to two digits after the decimal place.
How can you make it round it to 4000?

5. See if you can figure out how the floor() function is
different from round().

Navigation hints

“Tab” autocomplete

Type ro and then hit tab.
Brings up a window showing possible

commands you might like to use

The up arrow

If you type the up arrow it will let you go through all your
previous commands in reverse order.

(This would first show sqrt(4), then 3*4*5, then 3+4+5)

Variables

This is a box. Inside the box is a cat.

The cat is the thing stored
The thing stored in a
variable is its “value”

The box is storage.
It could store many things.

It is a “variable”

Variable Value

box <- "cat"

The variable box “gets”
the value "cat"

There are many different
classes of variable

There are many different
colours of boxes

“numeric” variables store numbers
blackBox <- 212

“character” variables store text
blueBox <- “a cat”

“logical” variables store true/false
yellowBox <- TRUE

numeric
212

“a cat”

TRUE

character

logical

Creating variables

> age <- 34

age

• Variables are used to store information
• They provide a way of labelling information
• They refer to the contents of a block of computer memory

• Use the “assignment operator” <- to create one

Creating variables

No output appears in the console, but
the variable shows up in the Rstudio

“environment” panel

> age <- 34

• Variables are used to store information
• They provide a way of labelling information
• They refer to the contents of a block of computer memory
• Use the “assignment operator” <- to create one

Working with variables

> age <- 34
> age * 2
[1] 68

• Variables in R behave exactly the same way as their values do
• 34 * 2 is meaningful, “yellow” * 2 is not
• So…

> 34 * 2
[1] 68

> "yellow" * 2
Error in "yellow" * 2 : BLAH BLAH BLAH

> myColour <- "yellow"
> myColour * 2
Error in myColour * 2 : BLAH BLAH BLAH

> # R ignores anything after the #
> # this is used to make comments

> # define variable
> age <- 34
> age
[1] 34

> # get R to print age+10
> age + 10
[1] 44

> # age is still 34
> age
[1] 34

> # but we can overwrite:
> age <- age + 10
> age
[1] 44

Using variables doesn’t change the value

age

Reassigning values

age

The variable age currently
stores a value of 34

Reassigning values

age

Assigning a new value.…
age <- 15

Reassigning values

age

… makes the old value vanish
age <- 15

Reassigning values

age

You can assign a new value based on the old one…
age <- age + 9

age
+

Reassigning values

age

You can assign a new value based on the old one…
age <- age + 9

age

Reassigning values

age

You can assign a new value based on the old one…
age <- age + 9

age

Note on variable names
You can name your variable most things, but not anything.

A-Z
a-z
0-9

.
_

(space)
?!+=
etc

Must start with a letter or a period. Can’t be a reserved keyword
(like TRUE). Don’t worry too much about this, R will yelp if you do it.

yes no

Try to use simple, informative names that follow a convention.

age
bodyTemp

favouriteColour
salary

variable
f827va4.x

the_favourite_colour_of_ea
ch_person_in_the_dataset

these
are

good

these
are not
great

Digression: What happens if you try
quit R after creating some variables?

Hm. What’s all this then?

Save “workspace image”? What’s this about????

The “workspace”

• All the variables you currently have are called a workspace
• We’ll talk about what this means later

• What R is asking is if you want to keep your variables for later
• It stores them in a “special” file.
• Right now, the answer is “no”.

• In general, I think it’s a bad idea to let R do this.
• Personally, I prefer to choose where my variables get stored
• My suggestion is that you tell R to stop whining about this…

The options menu

Choose “Global Options” from the “Tools” menu

The options panel

Select “Never” where it asks
“Save workspace to .RData on exit?”

(Then click “Apply” and then “OK” at the bottom)

Exercises

1. Make a variable called name with your first name in it. Now
make a variable called name with your last name. What
has happened? How do you make one with your
complete name?

2. Make a variable called x and set it equal to 2. Then set it
equal to itself plus 2. What is it now?

3. Make a variable called y and set it to TRUE. Then add
three to it. What happens? How is this different if you set
it to FALSE instead? What do you think is going on?

Storing multiple values
using variables

This is a big-box

It’s build from three
slots side by side

And each of those boxes
can store things

Each of those slots
is basically just a box

This is a vector

It’s build from three
elements side by side

And each of those
elements can store values

Each of those elements
is basically just a variable

Vectors

• Vectors are variables that store multiple pieces of information
• Conceptually, a vector is just an ordered list of values…

 pets <- c(“cat”, “dog”, “lizard”)

A function called c()

Creating vectors

> age <- c(34,2)
> age
[1] 34 2

numeric vectors:

> name <- c("dan", "alex")
> name
[1] "dan" "alex"

character vectors:

> nerd <- c(TRUE, FALSE)
> nerd
[1] TRUE FALSE

logical vectors:

c() combines a set of values, and
stores them as a vector...

😟

Note that all variables in a vector have to be of the same class. If
they aren’t, R will force them to be (another “silent fail”).

Creating vectors

You can give names to the elements

> boredom <- c(home = 0.52, train = 0.82, work = 0.99)
> boredom
 home train work
 0.52 0.82 0.99

home train work

boredom

home train work

boredom[3]

3rd element

boredom

0.52 0.82 0.99

boredom[2]

2nd element

boredom[1]

1st element

Selecting one element by position

home train work

boredom["train"]

boredom

0.52 0.82 0.99

Selecting one element by name

boredom["home"] boredom["work"]

home train work

boredom[-2]
all the elements except the 2nd one

boredom

0.52 0.82 0.99

Dropping one element by position

home train work

boredom[-1]
all the elements except the 1st one

boredom

0.52 0.82 0.99

Dropping one element by position

home train work

boredom[c(2,3)]

the 2nd and 3rd elements

boredom

0.52 0.82 0.99

Selecting more than one element (by position)

Notice that the thing in
the square brackets is

itself a vector!

home train work

boredom[c(1,3)]

the 1st and 3rd elements

boredom

0.52 0.82 0.99

Selecting more than one element (by position)

home train work

boredom[c(1,2)]

the 1st and 2nd elements

boredom

0.52 0.82 0.99

Selecting more than one element (by position)

home train work

boredom[1:2]

the 1st and 2nd elements

boredom

0.52 0.82 0.99

Selecting more than one element (by position)

Let’s check that…

> 3:9
[1] 3 4 5 6 7 8 9

> c(3,4,5,6,7,8,9)
[1] 3 4 5 6 7 8 9 The long way

The shortcut

home train work

boredom

boredom[c(TRUE, TRUE, FALSE)]

Keep element 1?
TRUE

0.52 0.82 0.99

Keep element 2?
TRUE

Keep element 3?
FALSE

Selecting elements “logically”

home train work

boredom

boredom[boredom < .9]

Is element 1 of
boredom less than .9?

TRUE

0.52 0.82 0.99

Is element 2 of
boredom less than .9?

TRUE

Is element 3 of
boredom less than .9?

FALSE

Selecting elements “logically”

Why the heck would we ever want to
select elements logically?

An almost realistic example

> subject <- c("STAT1", "STAT1", "STAT2", “STAT2")
> person <- c("ann", "bec", "ann", "bec")
> grades <- c(82, 71, 63, 80)

> data.frame(person, subject, grades)

 person subject grades
1 ann STAT1 82
2 bec STAT1 71
3 ann STAT2 63
4 bec STAT2 80

(Sneak preview… this is
what it looks like as an
actual data set…)

Create vectors that
contain useful data

An almost realistic example

> grades[subject == “STAT1"]
[1] 82 71

> subject[grades >= 65]
[1] "STAT1" "STAT1" “STAT2"

> grades[person == "ann"]
[1] 82 63

Here are the grades for Ann

STAT1 has two credit or higher
grades, STAT2 has one

Here are the grades for STAT1

> subject <- c("STAT1", "STAT1", "STAT2", “STAT2")
> person <- c("ann", "bec", "ann", "bec")
> grades <- c(82, 71, 63, 80)

An almost realistic example

> grades[person == "ann" & subject == “STAT1"]
[1] 82

Find the grade where…
 the person is Ann
 and the subject is STAT1

An almost realistic example

> grades[person == "ann" & subject == “STAT1"]
[1] 82

> grades[person == "ann" & subject == “STAT1" & grades < 50]
numeric(0)

Try to find the grade where…
 the person is Ann
 and the subject is STAT1
 and the grade was a fail

Find the grade where…
 the person is Ann
 and the subject is STAT1

There aren’t any grades like that!
The output is a “numeric” vector with 0 elements

Exercises
1. Make a vector called family with the names of everyone in your

family, and another vector called ages with their ages (in the same
order). If you don’t have two or more people in your family, make
some up.

2. Have R select the first item in the ages vector. Then Have R select the
ages that are older than 90. What happens if there are none? (Use a
different threshold than 90 if you need to). Do the same thing with 20
instead.

3. Have R return the names of the people in your family who are older
than 20.

4. ** The modulus operator in R is %% and will return the remainder after
division (e.g. 10%%8 is 2). Create a vector called n with the numbers
from 1 to 100, and then use the modulus operator to return only the
even numbers from n.

Intro to R cheat sheet

+ addition
- subtraction
* multiplication
/ division
^ taking powers
<- assignment

== equality
!= inequality
> greater than
>= greater than or equal to
< less than
<= less than or equal to

& AND
| OR
! NOT

sqrt() - Square root
round() - Round a number
log() - Logarithm
exp() - Exponentiation
abs() - Absolute value

functions take arguments
(order matters, unless you name them)

1 operators and logical statements

2 functions

3

4 functions can take other functions
evaluated from the inside out

5
variable example picture

numeric 212

logical TRUE

character “a cat”

variable classes

age <- 34

age<-age+9

6 variable assignment

age+10

myVector <- c(“cat”,“dog”,“lizard”)

0.52 0.82 0.99
boredom <- c(home=0.52,train=0.82,work=0.99)

home

boredom[1]
boredom[“home”]
boredom[boredom<0.9]

home
0.52

7 vectors are lists of variables
of the same class

can access or assign specific variables in
a vector by location, name, or logic

all these pick out the first item in the vector

Intro to R cheat sheet

