
Dani Navarro
Amy Perfors

R Bootcamp Part 3

Today’s Plan

1. Loops
2. Branches
3. Functions
4. Programming
5. File system

Loops

The purpose of a loop

While loops

while (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

Needs to be a logical
(TRUE or FALSE)

Does all of these
things as long as the

condition is TRUE

While loops

[1] 1074

x <- 0
while (x < 1000) {
 x <- x + 179
}
print(x)

for (VAR in VECTOR) {
 STATEMENT1
 STATEMENT2
 ETC
}

For loops

Counts through each
of the things in the

vector

Does all of these
things as long as the

condition is TRUE

for (value in 1:10) {
 answer <- 137*value
 print(answer)
}

For loops

137
274
411
548
685
822
959
1096
1233
1370

words <- c(“farewell”,”cruel”,”world”)
for (thisWord in words) {
 nLetters <- nchar(thisWord)
 blockWord <- toupper(thisWord)
 cat(blockWord,”has”,nLetters,”letters\n”)
}

Looping over vectors

FAREWELL has 8 letters
CRUEL has 5 letters
WORLD has 5 letters

Branches

Branches

These let you evaluate conditional statements and do different
things depending on the outcome

If (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

Needs to be a logical
(TRUE or FALSE)

Does all of these
things only if the

condition is TRUE

Branches

If-Else

if (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
} else {
 STATEMENT3
 STATEMENT4
}

Example

if (today==“Saturday”) {
 print(“Yay! Weekend!”)
} else if (today==“Sunday”) {
 print(“Uh oh, Monday is coming”)
} else {
 print(“I need coffee.”)
}

Functions

Functions
You can actually create your own functions with arguments. Whenever
it is called R will execute the statements within it. Creating a function

means R creates a temporary environment with it while it’s in practice,
and only “keeps” the value in the return() statement.

FNAME <- function (ARG1, ARG2, ARG3, ETC) {
 STATEMENT1
 STATEMENT2
 STATEMENT3
 ETC
 return (VALUE)
}

Functions

Here’s an example of a function that will square any number.

square <- function(x) {
 y <- x*x
 return(y)
}

> square(4)
16

Functions

The … argument lets the user enter as many arguments as they would
like, as in the example below.

doubleMax <- function(...) {
 maxVal <- max(...)
 out <- 2*maxVal
 return(out)
}

Bringing it all together

What is all this about?????

Associative learning

Unconditioned stimulus (US) –
something inherently rewarding

Conditioned stimulus (CS) –
something initially neutral

In the simplest design (forward
conditioning) the CS is
presented slightly before the
US, so that it can serve as a
signal that reward is coming

Associative learning

After some number of presentations, the
learner starts to respond to the CS in the
same way they would respond to the US

They have a learned association between
the CS and the US

(well, Pavlovian anyway)

There are many
variations on this!

(Long list of empirical
effects to account for)

One popular (though flawed & incomplete) account of
associative learning is the Rescorla-Wagner model

But what does this strange
inscription mean?????

The Rescorla-Wagner model

CS with two
components

X Y

US present

+

An XY+ trial

Consider a design in which
there are two features present
(X and Y) and the learner
needs to predict an outcome
that might be present (+) or
absent (-)

The Rescorla-Wagner model

The old strength of
association for stimulus X

The new strength of association
for stimulus X after seeing XY+

The difference between the old and the new.
By convention “differences” are denoted
“delta”, so we call this “delta-V”, ΔV

The Rescorla-Wagner model

This delta-V describes “how much
we learn about X from the current
trial/event”

The “alpha” and “beta” terms here are
parameters describing learning rates.

- alpha depends on the CS
- beta depends on the US

The Rescorla-Wagner model

The Rescorla-Wagner model

This difference term here is called
the “reward prediction error”

The Rescorla-Wagner model

lambda is represents the “intrinsic” value of
the outcome (unconditioned stimulus),
sometimes referred to as the “reward”, r

The Rescorla-Wagner model

Vxy is the “predicted reward”: the amount of
reward/punishment that the learner expects to
receive upon seeing the compound stimulus XY

In the Rescorla-Wagner model, expectations are
additive, which means that:

(But not all learning models assume additivity)

Error driven learning!

reward expected reward

the difference between outcomes and
expectations is the prediction error, and
it is this error that “drives” learning

learning is gradual, and
depends on a learning rate

how much does the learner
change their beliefs?

Let’s do this!

Step 1: Skeleton

updateRW <- function(value, alpha, beta, lambda) {
}

The design of our R function
mirrors the structure of the

Rescorla-Wagner model that it
implements

Step 1: Skeleton

updateRW <- function(value, alpha, beta, lambda) {
}

Vector specifying
associative strength

between US and each
element of the CS

Vector with the
salience

parameters
Single learning
rate (since only

one US
presented)

Single max
associability

Reminder:

Step 2: Make a plan

updateRW <- function(value, alpha, beta, lambda) {

 # compute the value of the compound stimulus
 # compute the prediction error
 # compute the change in strength
 # update the association value
 # return the new value

}

Reminder:

Step 3: Put in the details
updateRW <- function(value, alpha, beta, lambda) {

 # compute the value of the compound stimulus
valueCompound <- sum(value)

 # compute the prediction error
 predictionError <- lambda - valueCompound

 # compute the change in strength
valueChange <- alpha * beta * predictionError

 # update the association value
 value <- value + valueChange

 # return the new value
 return(value)
}

Reminder:

Step 4: Model predictions
1. Conditioning
2. Extinction
3. Blocking

Conditioning

nTrials <- 20
strength <- numeric(nTrials)

for (trial in 2:nTrials) {
 strength[trial] <- updateRW(strength[trial-1])
}

Extinction

nTrials <- 50
strength <- numeric(nTrials)
lambda <- 0.3

for (trial in 2:nTrials) {

 # remove the shock after trial 25
 if (trial>25) {
 lambda <- 0
 }

 # update associative strength on each trial
 strength[trial] <- updateRW(value=strength[trial-1],

 lambda=lambda)
}

Blocking

total number of trials across
both phases of the task
n_trials <- 50

vectors of zeros
strength_A <- rep(0,n_trials)
strength_B <- rep(0,n_trials)

Blocking

total number of trials across
both phases of the task
n_trials <- 50

vectors of zeros
strength_A <- rep(0,n_trials)
strength_B <- rep(0,n_trials)

learning rate for the CS at the
start of the experiment is .3 for
A and 0 for B (b/c it’s absent)
alpha <- c(.3, 0)

Blocking
for(trial in 2:n_trials) {

 # after trial 15, both stimuli are present
 if(trial > 15) alpha <- c(.3, .3)

 # vector of current associative strengths
 v_old <- c(strength_A[trial-1], strength_B[trial-1])

 # vector of new associative strengths
 v_new <- update_RW(
 value = v_old,
 alpha = alpha
)

 # record the new strengths
 strength_A[trial] <- v_new[1]
 strength_B[trial] <- v_new[2]
}

Blocking

Strong association to
A is formed early and

maintained

There is learning to B,
but greatly reduced

and it asymptotes at a
low level

A+ trials AB+ trials

1 Saving and importing

Scripts let you run and save
series of commands

- Save as .RData, using menu or save.image()
- Can load .csv, using menu or read.csv()

save as .R file

run by choosing “Source”
(once it’s saved)

comments don’t do
anything in R but tell you
what each part does

commands are just like you
typed them into the console

help(functionName)
e.g. help(print)

Intro to R cheat sheet

12

13

