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Today’s Plan

1. Loops 
2. Branches 
3. Functions 
4. Programming 
5. File system



Loops



The purpose of a loop



While loops

while ( CONDITION ) {
  STATEMENT1
  STATEMENT2
  ETC 
}

Needs to be a logical 
(TRUE or FALSE)

Does all of these 
things as long as the 

condition is TRUE



While loops

## [1] 1074

x <- 0
while (x < 1000) {
  x <- x + 179
}
print(x)



for ( VAR in VECTOR ) {
  STATEMENT1
  STATEMENT2
  ETC 
}

For loops

Counts through each 
of the things in the 

vector

Does all of these 
things as long as the 

condition is TRUE



for ( value in 1:10 ) {
  answer <- 137*value
  print(answer)
}

For loops

# 137
# 274
# 411
# 548
# 685
# 822
# 959
# 1096
# 1233
# 1370



words <- c(“farewell”,”cruel”,”world”)
for (thisWord in words) {
   nLetters <- nchar(thisWord)
   blockWord <- toupper(thisWord)
   cat(blockWord,”has”,nLetters,”letters\n”)
}

Looping over vectors

# FAREWELL has 8 letters
# CRUEL has 5 letters
# WORLD has 5 letters



Branches



Branches

These let you evaluate conditional statements and do different 
things depending on the outcome

If ( CONDITION ) {
  STATEMENT1
  STATEMENT2
  ETC 
}

Needs to be a logical 
(TRUE or FALSE)

Does all of these 
things only if the 

condition is TRUE



Branches



If-Else

if ( CONDITION ) {
  STATEMENT1
  STATEMENT2
  ETC 
} else {
  STATEMENT3
  STATEMENT4
}



Example

if (today==“Saturday”) {
   print(“Yay! Weekend!”)
} else if (today==“Sunday”) {
   print(“Uh oh, Monday is coming”)
} else {
   print(“I need coffee.”)
}



Functions



Functions
You can actually create your own functions with arguments. Whenever 
it is called R will execute the statements within it. Creating a function 

means R creates a temporary environment with it while it’s in practice, 
and only “keeps” the value in the return() statement.

FNAME <- function (ARG1, ARG2, ARG3, ETC) {
   STATEMENT1
   STATEMENT2
   STATEMENT3
   ETC
   return (VALUE)
}



Functions

Here’s an example of a function that will square any number.

square <- function(x) {
   y <- x*x
   return(y)
}

> square(4)
# 16



Functions

The … argument lets the user enter as many arguments as they would 
like, as in the example below.

doubleMax <- function(...) {
   maxVal <- max(...)
   out <- 2*maxVal
   return(out)
}



Bringing it all together



What is all this about?????



Associative learning

Unconditioned stimulus (US) – 
something inherently rewarding

Conditioned stimulus (CS) – 
something initially neutral

In the simplest design (forward 
conditioning) the CS is 
presented slightly before the 
US, so that it can serve as a 
signal that reward is coming



Associative learning

After some number of presentations, the 
learner starts to respond to the CS in the 
same way they would respond to the US

They have a learned association between 
the CS and the US

(well, Pavlovian anyway)



There are many 
variations on this! 

(Long list of empirical 
effects to account for)



One popular (though flawed & incomplete) account of 
associative learning is the Rescorla-Wagner model

But what does this strange 
inscription mean?????

The Rescorla-Wagner model



CS with two 
components

X Y

US present

+

An XY+ trial

Consider a design in which 
there are two features present 
(X and Y) and the learner 
needs to predict an outcome 
that might be present (+) or 
absent (-)

The Rescorla-Wagner model



The old strength of 
association for stimulus X

The new strength of association 
for stimulus X after seeing XY+

The difference between the old and the new. 
By convention “differences” are denoted 
“delta”, so we call this “delta-V”, ΔV   

The Rescorla-Wagner model



This delta-V describes “how much 
we learn about X from the current 
trial/event” 

The “alpha” and “beta” terms here are 
parameters describing learning rates.

- alpha depends on the CS 
- beta depends on the US

The Rescorla-Wagner model



The Rescorla-Wagner model

This difference term here is called 
the “reward prediction error”



The Rescorla-Wagner model

lambda is represents the “intrinsic” value of 
the outcome (unconditioned stimulus), 
sometimes referred to as the “reward”, r 



The Rescorla-Wagner model

Vxy is the “predicted reward”: the amount of 
reward/punishment that the learner expects to 
receive upon seeing the compound stimulus XY

In the Rescorla-Wagner model, expectations are 
additive, which means that:

(But not all learning models assume additivity)



Error driven learning!

reward expected reward

the difference between outcomes and 
expectations is the prediction error, and 
it is this error that “drives” learning

learning is gradual, and 
depends on a learning rate

how much does the learner 
change their beliefs?



Let’s do this!



Step 1: Skeleton

updateRW <- function(value, alpha, beta, lambda) {
}

The design of our R function 
mirrors the structure of the 

Rescorla-Wagner model that it 
implements 



Step 1: Skeleton

updateRW <- function(value, alpha, beta, lambda) {
}

Vector specifying 
associative strength 

between US and each 
element of the CS

Vector with the 
salience 

parameters
Single learning 
rate (since only 

one US 
presented)

Single max 
associability

Reminder:



Step 2: Make a plan

updateRW <- function(value, alpha, beta, lambda) {
  
  # compute the value of the compound stimulus
  # compute the prediction error
  # compute the change in strength
  # update the association value
  # return the new value

}

Reminder:



Step 3: Put in the details
updateRW <- function(value, alpha, beta, lambda) {

  # compute the value of the compound stimulus
valueCompound <- sum(value)

  # compute the prediction error
  predictionError <- lambda - valueCompound

  # compute the change in strength
valueChange <- alpha * beta * predictionError

  # update the association value
  value <- value + valueChange  

  # return the new value
  return(value)
}

Reminder:



Step 4: Model predictions
1. Conditioning 
2. Extinction 
3. Blocking



Conditioning

nTrials <- 20
strength <- numeric(nTrials)

for (trial in 2:nTrials) {
  strength[trial] <- updateRW(strength[trial-1])
}



Extinction

nTrials <- 50
strength <- numeric(nTrials)
lambda <- 0.3

for (trial in 2:nTrials) {
   
   # remove the shock after trial 25
   if (trial>25) {
     lambda <- 0
   }

   # update associative strength on each trial
   strength[trial] <- updateRW(value=strength[trial-1],

                     lambda=lambda)
}



Blocking

# total number of trials across 
# both phases of the task
n_trials <- 50

# vectors of zeros
strength_A <- rep(0,n_trials)
strength_B <- rep(0,n_trials)



Blocking

# total number of trials across 
# both phases of the task
n_trials <- 50

# vectors of zeros
strength_A <- rep(0,n_trials)
strength_B <- rep(0,n_trials)

# learning rate for the CS at the 
# start of the experiment is .3 for
# A and 0 for B (b/c it’s absent)
alpha <- c(.3, 0)



Blocking
for(trial in 2:n_trials) {
  
  # after trial 15, both stimuli are present
  if(trial > 15) alpha <- c(.3, .3)
  
  # vector of current associative strengths
  v_old <- c(strength_A[trial-1], strength_B[trial-1])
  
  # vector of new associative strengths
  v_new <- update_RW(
    value = v_old,
    alpha = alpha
   )
  
  # record the new strengths
  strength_A[trial] <- v_new[1]
  strength_B[trial] <- v_new[2]
}



Blocking

Strong association to 
A is formed early and 

maintained

There is learning to B, 
but greatly reduced 

and it asymptotes at a  
low level

A+ trials AB+ trials



1 Saving and importing

Scripts let you run and save 
series of commands

- Save as .RData, using menu or save.image() 
- Can load .csv, using menu or read.csv()

save as .R file

run by choosing “Source” 
(once it’s saved)

comments don’t do 
anything in R but tell you 
what each part does

commands are just like you 
typed them into the console

help(functionName)
e.g. help(print)

Intro to R cheat sheet
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