R Bootcamp Part 3

Dani Navarro
Amy Perfors

oW~

Loops
Branches
-unctions
Programming
-lle system

Today’s Plan

Loops

The purpose of a loop

..

How R reads a script without loops How R reads a script with a loop
Do the first thing Do the first thing
Do another thing Oh hey a loop!
D0 anothel thiig nope Do a different thing
etc Are we done looping?

...

While loops

while (CONDITION) {

STATEMENT1
STATEMENT? ‘\\\\\\\\
ETC

Needs to be a logical
s (TRUE or FALSE)

Does all of these
things as long as the
condition is TRUE

While loops

< <o 0 Setx =0
while (x < 1000) { % Oh hey a loop!
X <- X + 179 s x > 10007
) yes | no
prl'i_ntCX) Add 179 to x
[1] 1074 of he loop
@

Print x

For loops

for (VAR 1n VECTOR) {

STATEMENT1
STATEMENTZ
ETC

Counts through each
} of the things in the
vector

Does all of these
things as long as the
condition is TRUE

For loops

137
274
411
548
085
822
959
1090
1233
1370

for (value 1n 1:10) {
answer <- 137*value
print(answer)

¥

HF FHFFHFFHFFH FH FH FH H R

Looping over vectors

words <- c(“farewell”,”cruel”,”world”)

for (thisWord in words) {
nLetters <- nchar(thisWord)
blockWord <- toupper(thisWord)
cat(blockWord,”has”,nLetters,”letters\n”)

¥

FAREWELL has &8 letters
CRUEL has 5 letters
WORLD has 5 letters

Branches

Branches

These let you evaluate conditional statements and do different
things depending on the outcome

It (CONDITION) {

STATEMENT1
STATEMENT?Z
ETC Needs to be a logical

(TRUE or FALSE)

Does all of these
things only if the
condition is TRUE

Branches

Oh hey an if statement!
|s the condition true?

yep
nope,

skipping Okay, do the thing
this part

Continue with rest of script

f-Else

1f (CONDITION) {
STATEMENT1
STATEMENTZ
, ETC { o the bonditon 46
eLse
STATEMENT3 =
STATEMENT4
} Do this thing... Do this other thing...

Continue with rest of script

Example

1f (today==“Saturday”) {
print(“Yay! Weekend!”)

} else if (today==“Sunday”) {
print(“Uh oh, Monday 1s coming”)

} else {
print(“I need coffee.”)

¥

Functions

Functions

You can actually create your own functions with arguments. Whenever
it is called R will execute the statements within it. Creating a function
means R creates a temporary environment with it while it’s in practice,
and only “keeps” the value in the return() statement.

FNAME <- function (ARG1, ARG2, ARG3, ETQ) {

STATEMENT1
STATEMENT?Z
STATEMENT3
ETC

return (VALUE)

Functions

Here’s an example of a function that will square any number.

square <- function(x) {
y <- X*X
return(y)

> square(4)
16

Functions

The ... argument lets the user enter as many arguments as they would
ike, as in the example below.

doubleMax <- function(...) {
maxVal <- max(...)
out <- Z2*maxVal
returnCout)

Bringing it all together

What is all this about??7?7?7?

Suppose we present a compound stimulus AB, which consists of two things, a tone (A) and a light (B). This compound
is presented together with a shock. In associative learning studies, this kind of trial is denoted AB+ to indicate that
the outcome (US) was present at the same time as the two stimuli that comprise the CS. According to the Rescorla-
Wagner model, the rule for updating the associative strengths v4 and vg between the originally neutral stimuli and
the shock is given by:

va < va+aafu(Ay — vap)

vg <« vp+agPu(Ay — vaB)

where the associative value v45 of the compound stimulus AB is just the sum of the values of the two items
individually. This is expressed as:

VAB = V4 + VB

To understand this rule, note that:

Ay is avariable that represents the “reward value” (or “punishment value”) of the US itself, and as such
represents the maximum possible association strength for the CS.

Pu is alearning rate linked to the US (e.g. how quickly do | learn about shocks?)

je—"
a4 is a learning rate linked to the CS (e.g, how quickly do | learn about tones?) ' r
ap is also a learning rate linked to the CS (e.g, how quickly do | learn about lights?)

Associative learning

In the simplest design (forward
conditioning) the CS is
presented slightly before the
US, so that it can serve as a
signal that reward is coming

Unconditioned stimulus (US) —
something inherently rewarding

Conditioned stimulus (CS) —
something initially neutral

Associative learning

(well, Pavlovian anyway)

After some number of presentations, the
learner starts to respond to the CS in the
same way they would respond to the US

They have a learned association between
the CS and the US

FORWARD CONDITIONING

G- | -8

SIMULTANEOUS CONDITIONING

=0 | 258

Ilvan Paviov

SECOND ORDER CONDITIONING ' S

Y Yo Y Yo Y Y
6260 | 6062 | 68
v J J B v

v

TEMPORAL CONDITIONING
7 7
C) o C) & ©)

EXTINCTION

20 | 270 | B8

BLOCKING
0 | - | e
INHIBITION

0 | BB | B0

There are many
variations on this!

(Long list of empirical
effects to account for)

The Rescorla-Wagner model

Ve < Vo +aB(A— V)
D B 5 &

One popular (though flawed & incomplete) account of
associative learning is the Rescorla-\Wagner model

o
® § But what does this strange
e, Inscription mean????"

The Rescorla-Wagner model

Ve —Ve+aB(A— V)

CS with two
components

' J’

X Y

US present

:) £
= ™

|

An XY+ trial

Consider a design in which
there are two features present
(X and Y) and the learner
needs to predict an outcome
that might be present (+) or
absent (-)

The Rescorla-Wagner model

Ve —Ve+aB(A— V)

The old strength of '
association for stimulus X

The new strength of association
for stimulus X after seeing XY+

fm
\ :. ‘) L.- 1 g
v e

The difference between the old and the new.
By convention “differences” are denoted
“delta”, so we call this “delta-V”’, AV

The Rescorla-Wagner model

AV, =aB(N— V)

The “alpha” and “beta” terms here are

This delta-V describes “how much parameters describing learning rates.

we learn about X from the current

trial/event” - alpha depends on the CS

- beta depends on the US

LA
A A

l.?_.'”’\ "'_-l,;r,

The Rescorla-Wagner model

AV, =aB(N— V)

This difference term here is called
the “reward prediction error”

The Rescorla-Wagner model

AV, =aB(N— V)

lambda is represents the “intrinsic” value of
the outcome (unconditioned stimulus),
sometimes referred to as the “reward”, r

The Rescorla-Wagner model

AV, =aB(N— V)

V,, is the "predicted reward”: the amount of

reward/punishment that the learner expects to
receive upon seeing the compound stimulus XY

In the Rescorla-\Wagner model, expectations are
additive, which means that:

Viy = Ve + V),

(But not all learning models assume additivity)

Error driven learning!

AV, =aB(N— V)

reward expected reward

the difference between outcomes and
expectations is the prediction error, and

how much does the learner it is this error that “drives” learning
change their beliefs?

learning is gradual, and
depends on a learning rate

Let’s do this!

Step 1: Skeleton

updateRW <- function(value, alpha, beta, lambda) {
5

Ve Ve +aB(A— V)

/

The design of our R function
mirrors the structure of the
Rescorla-Wagner model that it
implements

Step 1: Skeleton

updateRW <- function(value, alpha, beta, lambda) {

} / /’ r \

Vectprtlspeilfylngth Vector with the Single max
aSSOocClative streng salience aSSOCiab”ity
between US and each
parameters |

element of the CS

Single learning
rate (since only

one US
presented)

Reminder:

Ve Vo +aB(A—V,)

updateRW <-

H FH H FH F

com
com
com

oute
rute
oute

Step 2: Make a plan

function(value, alpha, beta, lambda) {

t
t
t

ne value of the compound stimulus
ne prediction error

ne change 1n strength

update the association value
return the new value

Reminder:

Ve Vo +aB(A—V,)

Step 3: Put in the detalls

updateRW <- function(value, alpha, beta, lambda) {

compute the value of the compound stimulus
valueCompound <- sum(value)

compute the prediction error
predictionError <- lambda - valueCompound

compute the change 1n strength
valueChange <- alpha * beta * predictionEkrror

update the association value
value <- value + valueChange

return the new value Reminder:

return(value)
) Ve < Vo + aB(A = Vi)

Step 4: Model predictions

1. Conditioning
2. Extinction
3. Blocking

Conditioning

nTrials <- 20
strength <- numeric(nTrials)

for (trial in 2:nTrials) {
strength[trial] <- updateRW(strength[trial-1])
¥

0.8

Association
04
|

0.2
°

0.0
|
°

Trial Number

nTrials <- 50

strength <- numeric(nTrials)

lambda <- 0.3

Extinction

Association

for (trial in 2:nTrials) {

remove the shock after trial 25

1f (trial>25) {

lambda <- 0
}

0.00 0.05 0.10 0.15 0.20 0.25

update associative strength on each trial

strength[trial] <- updateRW(value=strength[trial-1],
lambda=1ambda)

Trial Number

Blocking

total number of trials across
both phases of the task
n_trials <- 50

vectors of zeros
strength_A <- rep(0,n_trials)
strength_B <- rep(0,n_trials)

Blocking

total number of trials across
both phases of the task
n_trials <- 50

vectors of zeros
strength_A <- rep(0,n_trials)
strength_B <- rep(0,n_trials)

learning rate for the CS at the

start of the experiment is .3 for
A and @ for B (b/c 1t’s absent)
alpha <- c(.3, 0)

Blocking

for(trial in 2:n_trials) {

after trial 15, both stimuli are present
1f(trial > 15) alpha <- (.3, .3)

vector of current associative strengths
v_old <- c(strength_A[trial-1], strength_B[trial-1])

vector of new associative strengths
v_new <- update_RW(
value = v_old,
alpha = alpha
)

record the new strengths
strength_A[trial] <- v_new[1]
strength_B[trial] <- v_new[Z]

Association

0.4 0.6 0.8

0.2

0.0

A+ trials

Blocking

AB+ trials

Trial Number

Strong association to
A Is formed early and
Mmaintainead

There is learning to B,
but greatly reduced
and it asymptotes at a
low level

INtro to R cheat sheet

Saving and importing

- Save as .RData, using menu or save.image()
- Can load .csv, using menu or read.csv()

Scripts let you run and save
series of commands

(3] myScriptintroToR.R e (]
& | Source on Save e | 31 % Run %% | #Source v =
1 # this 1s my first script
2 # 1t's just for DRIP class :
o . save as .R file f
4 # author: Amy Perfors
5 . 11)
6 # define some variables run by ChOCI),SIHQ Source
7 age <- 19 (once it’'s saved)
8 box <- "cat”
9

comments don’t do
anything in R but tell you
what each part does

10 # print something
11 print(box)
12 print(age)

commands are just like you
typed them into the console

8:13 (Top Level) = R Script =

help(functionName)
e.g. help(print)

Files Plots Packages Help Viewer

@ R S D

R: Print Values ~

print {base}

Print Values

Description

print prints its argument and returns it in
function which means that new printing mef

Usage

print(x, ...)

Arguments

X an object used to sele
further arguments pas

quote logical, indicating whe
quotes.

max.levels integer, indicating how
extra "Levels" line will
max.levels such th¢

width only used when max..

