DAY 1: EXPERIMENT # Not just coding it up, but all workflow stuff up to running it - 1. Background: replicability and proper procedure - 2. Workflow and organisation - 3. Experiment design - 4. Coding experiment - 5. Ethics and pre-registration - 6. Hosting experiment on a server - 7. Running experiment - 8. Downloading data ## **ETHICS** Not that much to say here, since everyone's ethics committees are different and the MTurk issues will be discussed later ### Main points are simply: - 1. Remember to get ethics approval before running anything! - 2. Save it and your ethics documents - 3. Trick of the trade (for minimal risk): describe the experiment abstractly enough to accommodate additional conditions without having to get additional approval - 4. It's an annoying hoop but it's there for a reason, so as much as possible try to view it as an opportunity to make sure you are doing right by your participants as much as possible # PRE-REGISTRATION Should you pre-register? Always? How do you pre-register? The "should" is more complicated, but really good to have a handle on because your reasons for doing it will shape what it is you are doing. # (WHEN) SHOULD YOU PRE-REGISTER? Split up into groups of 2 or 3. See if you can generate some pros and cons (or caveats, or concerns) to pre-registration, which we'll then discuss as a group ## HOW DO YOU PRE-REGISTER? Main goal: eliminate worries about p-hacking by removing researcher degrees of freedom (in the experimental design and the analysis): **not** to make a hypothesis that you end up supporting with your data All of the details of pre-registration are oriented around achieving that aim ### HOW DO YOU PRE-REGISTER? ### https://aspredicted.org ## HOW DO YOU PRE-REGISTER? #### How does it work? - One author briefly answers 9 questions. - All participating authors receive an email asking for approval. - If everyone approves, it is saved and stays private until an author acts to make it public, or it remains private forever. (Why?) - Authors may share anonymous .pdf with reviewers. - If made public, a single-page .pdf is generated. That document can be used as a supplement. (See sample) - The .pdf contains a unique URL that allows for one-click verification. That URL can be included in the paper. - The .pdf is automatically stored in the web-archive. (See sample) - There are no accounts, userids, or passwords. # What if things don't go "as predicted" You can just say so in the paper: - "Contrary to expectations, we found that..." - "Unexpectedly, we also found that..." - "In addition to the analyses we preregistered we also ran..." - "We encountered an unexpected situation, and followed our Standard Operating Procedure" (.pdf) # THE 9 QUESTIONS - 1. Data collection. Have any data been collected for this study already? - 2. Hypothesis. What's the main question being asked or hypothesis being tested in the study? - 3. Dependent variable. Describe the key dependent variable(s) specifying how they will be measured. - 4. Conditions. How many and which conditions will participants be assigned to? - 5. Analyses. Specify exactly which analyses you will conduct to examine the main question/hypotheses. - 6. Outliers and exclusions. Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding observations. - 7. Sample size. How many observations will be collected or what will determine sample size. - 8. Other. Anything else you would like to pre-register? - 9. Name. Give a title for this AsPredicted registration. # TIPS FOR PRE-REGISTERING #### 1. Don't provide too little information Specify anything you need to specify so that a skeptic won't be able to point to that as a place that you could have been phacking: specific measures, sample size (or explanation), specific variables, specific tests, exclusion criteria #### 2. Don't provide too much information Don't specify things that would go into a paper that are irrelevant to p-hacking concerns, like the theoretical justification of the study # TIPS FOR PRE-REGISTERING | Item in preregistration | Bad answer | What's wrong with it? | Good answer | |---------------------------------|---|---|--| | Research Question or Hypothesis | Building on the work of Picasso
(1901-1904), we hypothesized
that | You don't need reasons for asking the research question because they do not inform possible p-hacking. Just state the question or hypothesis of interest. | Question: Does sadness increase preference for the color blue? | | Dependent variable | Preference for the color blue | This preference can be measured in many different ways so this statement underspecifies how it will be measured. | Participants will rate their liking for red, blue, orange, and purple on 7-point scales (1 = not at all; 7 = an extreme amount). Prefereence for blue will be defined as the difference between a participant's rating for blue and their average rating of the three non-blue colors. | | Manipulations/Conditions | We will manipulate mood by having participants watch different videos. | This leaves room for cherry-
picking from amongst a larger
set of conditions. Specify the
exact conditions and the exact
manipulations. | Before rating their color preferences,
participants will be randomly
assigned to one of three conditions
in which they watch a clip from
either a sad video (My Dog Skip), a
happy video (Pitch Perfect), or a
neutral video (Gone Curling). | # TIPS FOR PRE-REGISTERING | item in preregistration | Bad answer | What's wrong with it? | Good answer | |-------------------------|--|--|--| | Analyses | We will regress preference for the color blue on mood condition | There are many ways to run these analyses. For example, are you including covariates? How will "mood condition" be coded? If applicable, how will the standard errors be computed? | We will run an OLS regression predicting preference for the color blue with condition (coded 1 = sad video; 0 = happy or neutral video). We will control for gender (1 = male; 0 = female) in this analysis. | | Outliers & Exclusions | We will exclude participants who are inattentive, and those who show an extreme preference for the color orange. | What counts as "inattentive"? What counts as "extreme preference for the color orange"? You must define these things. | We will exclude participants who fail at least two out of the three attention checks that we will include at the beginning of our study (before the manipulation). We will also exclude participants whose rating of orange is higher than 5 on the 7-point scale. | | Sample size | We conducted a power analysis that showed that And so we decided to collect between 100 and 200 observations. | Your power analysis is irrelevant to whether you phacked; leave it out. Also, any sample size between 100 and 200 is consistent with this preregistration. | We will stop data collection once
150 participants have submitted a
response on MTurk. Deviations from
this goal are entirely due to MTurk
software and outside of our control. | ### PRE-REGISTRATION My opinion: It's almost always worth doing, and imposes a good discipline for figuring out exactly what your analyses will be before you do them. That said, I sometimes don't pre-register if it is completely exploratory research, and am just up front that it is exploratory. (And usually aim to replicate before publishing) I also personally tend to think that small sample sizes and lack of replication are bigger problems in many ways than lack of pre-registration, and worry sometimes that the focus on pre-registration takes the focus off of these things. Pre-registration is a great idea usually, but it is *not* a panacea! # OKAY.. I'VE PRE-REGISTERED. NOW HOW DO I PUT IT UP? # THIS IS WHERE YOU NEED GOOGLE APP ENGINE I hope you have succeeded in installing the Google App Engine SDK. If you have not, raise your hand. (The rest of you, have fun playing around with javascript) # OUTLINE OF STEPS - 1. Go to google cloud - 2. Make a new project (or go into an existing one if you're just modifying an old one) - 3. Open a terminal and go to the command line in the directory with the experiment - 4. Initialise google cloud in that directory - 5. Deploy the experiment so it shows up online. - 6. Go to your project url. ### 1. GO TO GOOGLE CLOUD #### cloud.google.com Go to console This will list your projects You can select "new project" This is what is going to show up in your url so try to name it something descriptive (for you) but that doesn't give away details you don't want to give away to the participants CANCEL OPEN # 3. OPEN TERMINAL AND GO TO COMMAND LINE DIRECTORY WITH YOUR EXPERIMENT ### Mac - 1. Open terminal (in Applications Utilities) - 2. Go to your folder using **cd** command (**ls** to show contents of directory). This folder is the one with your python scripts and **index.html** in it. cd Documents/teaching/2018/.../experiment/code/ ### Windows - 1. Open terminal (Start then type cmd at the Search/Run line) - 2. Unlike Mac, Windows must pass the full path of the script to the Python interpreter. If your interpreter is in the C:\Python27 folder you would type: C:\Python27\python.exe C:\Users\Username\Desktop\....\experiment\code\serveit.py 8000 Amys-MBP-3:code amy\$ gcloud init Welcome! This command will take you through the configuration of gcloud. Settings from your current configuration [default] are: core: account: perfors@gmail.com disable_usage_reporting: 'True' project: black-swan-melbourne Pick configuration to use: - [1] Re-initialize this configuration [default] with new settings - [2] Create a new configuration - [3] Switch to and re-initialize existing configuration: [qualification-test] Please enter your numeric choice: 1 Your current configuration has been set to: [default] You can skip diagnostics next time by using the following flag: gcloud init --skip-diagnostics Network diagnostic detects and fixes local network connection issues. Checking network connection...done. Reachability Check passed. Network diagnostic (1/1 checks) passed. Choose the account you would like to use to perform operations for this configuration: - [1] perfors@gmail.com - [2] Log in with a new account Please enter your numeric choice: 1 #### Pick cloud project to use: - [1] adelaide-expert-study - [2] adelaide-expert-studya - [3] adelaide-expert-studyb - [4] adelaide-label-learning - [5] black-swan-melbourne - [6] black-swan-unsw - [7] category-learning - [8] chdssprojecttest1 - [9] choices-experiment - [10] choices-inference - [11] expert-choices-expt - [12] hazel-scenarios - [13] label-learning-adelaide - [14] language-study-adelaide - [15] learn-new-language-adelaide - [16] learning-language-sounds - [17] mhp-adelaide - [18] qualification-test - [19] science-decisions-adelaide - [20] statistical-learning-adelaide - [21] Create a new project Please enter numeric choice or text value (must exactly match list item): 8 Your current project has been set to: [chdssprojecttest1]. Not setting default zone/region (this feature makes it easier to use [gcloud compute] by setting an appropriate default value for the --zone and --region flag). See https://cloud.google.com/compute/docs/gcloud-compute section on how to set default compute region and zone manually. If you would like [gcloud init] to be able to do this for you the next time you run it, make sure the Compute Engine API is enabled for your project on the https://console.developers.google.com/apis page. Your Google Cloud SDK is configured and ready to use! - * Commands that require authentication will use perfors@gmail.com by default - * Commands will reference project `chdssprojecttest1` by default Run `gcloud help config` to learn how to change individual settings This gcloud configuration is called [default]. You can create additional configurations if you work with multiple accounts and/or projects. Run `gcloud topic configurations` to learn more. Some things to try next: - * Run `gcloud --help` to see the Cloud Platform services you can interact with. And run `gcloud help COMMAND` to get help on any gcloud command. - * Run `gcloud topic -h` to learn about advanced features of the SDK like arg files and output formatting Updates are available for some Cloud SDK components. To install them, please run: \$ gcloud components update Amys-MBP-3:code amy\$ Annoying thing to do first: Remove the application and version fields from app.yaml Download new versions of backend.py and backend.pyc and write over existing ones Amys-MBP-3:code amy\$ gcloud app deploy You are creating an app for project [chdssprojecttest1]. WARNING: Creating an App Engine application for a project is irreversible and the region cannot be changed. More information about regions is at https://cloud.google.com/appengine/docs/locations. Please choose the region where you want your App Engine application located: - [1] us-west2 (supports standard and flexible) - [2] us-central (supports standard and flexible) - [3] europe-west (supports standard and flexible) - [4] europe-west3 (supports standard and flexible) - [5] asia-east2 (supports standard and flexible) - [6] europe-west2 (supports standard and flexible) - [7] us-east1 (supports standard and flexible) - [8] us-east4 (supports standard and flexible) - [9] asia-northeast1 (supports standard and flexible) - [10] asia-south1 (supports standard and flexible) - [11] australia-southeast1 (supports standard and flexible) - [12] southamerica-east1 (supports standard and flexible) - [13] northamerica-northeastl (supports standard and flexible) - [14] cancel Please enter your numeric choice: 2 I usually choose a region near my participants to minimise lag Creating App Engine application in project [chdssprojecttest1] and region [us-central]....done. Services to deploy: descriptor: [/Users/amy/Documents/teaching/2018/summerschool/chdss2018/day1_experiments/experiment/code/app.yaml] source: [/Users/amy/Documents/teaching/2018/summerschool/chdss2018/day1_experiments/ experiment/code] target project: [chdssprojecttest1] target service: [default] target version: [20181208t231304] target url: [https://chdssprojecttestl.appspot.com] Do you want to continue (Y/n)? Y Beginning deployment of service [default]... Some files were skipped. Pass `--verbosity=info` to see which ones. You may also view the gcloud log file, found at [/Users/amy/.config/gcloud/logs/2018.12.08/23.10.17.880726.log]. = Uploading 89 files to Google Cloud Storage File upload done. Updating service [default]...done. Setting traffic split for service [default]...done. Deployed service [default] to [https://chdssprojecttestl.appspot.com] You can stream logs from the command line by running: \$ gcloud app logs tail -s default To view your application in the web browser run: \$ gcloud app browse Amys-MBP-3:code amy\$ There is your url! # 6. GO TO YOUR PROJECT URL #### **UNSW Computational Cognitive Science** Thanks for accepting the HIT. **"The Spheres of Sodor"** is a short psychological study investigating how people make decisions. It involves the following steps: - 1. We ask for demographic information (not connected to your Amazon ID) - 2. Because this is a University research project, we ask for your informed consent. (The format of the consent form is a standard university document, so it sometimes looks a little weird on MTurk) - 3. The study then explains how to do the task in detail. You will need to pass a short test to check that you understand how the study works. - 4. Next comes the experiment itself. - 5. At the end, we'll give you the completion code you need to get paid for the HIT. The total time taken should be about 5 minutes. Please <u>don't</u> use the "back" button on your browser or close the window until you reach the end and receive your completion code. This is very likely to break the experiment and may make it difficult for you to get paid. However, if something does go wrong, please contact us! When you're ready to begin, click on the "start" button below. Start! ## WHAT IF YOU MAKE CHANGES? Just re-initialise and redeploy! gcloud init gcloud app deploy # DAY 1: EXPERIMENT # Not just coding it up, but all workflow stuff up to running it - 1. Background: replicability and proper procedure - 2. Workflow and organisation - 3. Experiment design - 4. Coding experiment - 5. Ethics and pre-registration - 6. Hosting experiment on a server - 7. Downloading data and wrap-up # VIEW YOUR DATA You can see your data coming in by looking in the google cloud console online ### VIEW YOUR DATA # VIEW YOUR DATA ## DOWNLOADING DATA IS EASY Go to your url and add on /info— it will automatically download a csv file called results ## DOWNLOADING DATA IS EASY Go to your url and add on /info— it will automatically download a csv file called results This file is in json format, not one that you can use, but the read.R script and the JSON_parser_function.R script (both of which you can download from the resources section) will convert it to a proper csv file I put them in the experiments/data directory, along with the results.csv file. Then, open read.R. First, set your working directory to the one with read.R and your results file in it Put that into your script (there is a better way to do this which Dani will cover tomorrow, but for now, let's do this) Change the names of your files as appropriate — a good suggestion is to rename results.csv to results1.csv to cover multiple runs of the same project, and your output to be parsedrawresults1.csv or something like that Source, and you will have a readable csv file with all of your data! All ready for the real fun to begin.